Comparing the workflow with traditional approaches

(Example 1: Modeling a wine glass)

To illustrate the difference in workflow efficiency, consider the modeling of a standard wine glass.

The underlying conceptual shape is shown below.

In a traditional script-based CAD workflow, the user must translate this visual concept directly

into code. The following OpenSCAD script is a representative example of this approach.

1. // parameters

2.

3. detail = 100; // mesh resolution
4, wall = 2.4; // wall thickness
5.

6. // base (foot)
7. base_d = 75;
8. base_h = 10;

9. base_edge = 9; // 0-180°

10.

11. // stem

12. stem_d = 8;

13. fillet_r = 18; // radius of foot-stem fillet

14. fillet_shape = 1; // 0.3 flat, 1 round, 2.5 steep
15.

16. // body (torso + bowl)

17. body_z 120; // sphere center height

18. body_d

70; // body diameter

19. body_tilt

40; // max sidewall angle

20. neck_d = 50; // transition diameter

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

body top_scale = 3.5; // z-scale of upper body
glass_max_h = 170; // max height

rim_th = 0; // rim thickness (@ = off)

// derived values

stem_offset = body d/2 * cos(body_tilt) - stem_d/2;
stem_len = stem_offset / sin(body_tilt);
stem_h = body_z

- (body_d/2) * sin(body_tilt)

- stem_len * cos(body_tilt);

inner_ball_d = stem_d - 2*wall;
inner_offset = (body _d/2 - wall)*cos(body_tilt) - stem_d/2 + wall;
inner_len = inner_offset / sin(body_tilt);
inner_ball_z = body_z
- (body_d - 2*wall)/2 * sin(body_tilt)
- inner_len * cos(body_tilt)

+ wall * sin(body_tilt);

inner_neck_z = body_z - (body_d - 2*wall)/2 * sin(body_tilt);

inner_neck_d = (body_d - 2*wall) * cos(body_tilt);

neck_len = neck_d * sin(body_tilt);

rim_h_aux = body_d/2 - wall/4 - (glass_max_h - body_z)/body_top_scale;

rim_radius = sqrt((body_d - wall)*rim_h_aux - rim_h_aux*rim_h_aux);

// base / foot

module base_part() {
if (base_edge <= 90) {
// center disk
cylinder(h = base_h/2 + base_h/2 * sin(90 - base_edge),

d = base_d, $fn = detail);

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

// curved outer edge
intersection() {

cylinder(h = base_h, d = base_d, $fn = detail);

hull() {
rotate_extrude(angle = 360, $fn = detail) {
translate([
base_d/2 - base_h/2 * cos(90 - base_edge),
base_h/2
)
circle(d = base_h, $fn = detail);

}

} else {

// curved base
hull() {
rotate_extrude(angle = 360, $fn = detail) {
translate([base_d/2 - base_h/2, base_h/2])

circle(d = base_h, $fn = detail);

// center disk
cylinder(h = base_h/2,
d = base_d - base_h * cos(180 - base_edge),

$fn = detail);

// straight stem with inner ball cut-out

module stem_part() {

difference() {

93. translate([0,0,base_h])

94. cylinder(h = stem_h - base_h + wall * sin(body_tilt),
95. d = stem_d, $fn = detail);

96.

97. hull() {

98. translate([0,0,inner_ball z])

99. sphere(d = inner_ball _d, $fn = detail);

100.

101. translate([0,0,inner_neck_z])

102. cylinder(h = 0.1, d = inner_neck_d, $fn = detail);
1e3. }

104. }

1e5. }

106.

107.

108. // fillet from base to stem

109.

110. module base_stem_fillet() {

111. difference() {

112. translate([0,0,base_h])

113. cylinder(h = fillet_r * fillet_shape,

114. d = stem_d + 2*fillet_r, $fn = detail);
115.

116. rotate_extrude(angle = 360, $fn = detail) {

117. translate([stem_d/2 + fillet_r, base_h + fillet_r * fillet_shape])
118. scale([1, fillet_shape])

119. circle(r = fillet_r, $fn = detail);

120. }

121. }

122. }

123.

124.

125. // lower body (torso bottom)
126.
127. module lower_body_part() {

128. difference() {

129. translate([0,0,body_z])

130. sphere(d = body_d, $fn = detail);

131.

132. translate([0,0,body_z])

133. sphere(d = body_d - 2*wall, $fn = detail);
134.

135. // remove upper half of the sphere

136. translate([-body_d, -body_d, body_z])

137. cube([2*body_d, 2*body_d, body_d]);

138.

139. // bottom cut (angle limit)

140. translate([-body _d,

141. -body_d,

142. body _z - body d - body_d/2 * sin(body_tilt)])
143. cube([2*body_d, 2*body_d, body_d]);

144.

145. // blend to inner stem ball

146. hull() {

147. translate([0,0,inner_ball_z])

148. sphere(d = inner_ball d, $fn = detail);
149.

150. translate([0,0,inner_neck_z])

151. cylinder(h = 0.1, d = inner_neck_d, $fn = detail);
152. }

153. }

154. }

155.

156.

157. // transition from stem to lower body
158.

159. module stem_body_transition() {

160. difference() {

161. rotate_extrude(angle = 360, $fn = detail) {
162. translate([-stem_d/2, stem_h])

163. rotate(body_tilt)

164. square([wall, stem_len + 0.1]);

165. }

166.

167. hull() {

168. translate([0,0,inner_ball _z])

169. sphere(d = inner_ball _d, $fn = detail);
170.

171. translate([0,0,inner_neck_z])

172. cylinder(h = 0.1, d = inner_neck_d, $fn = detail);
173. }

174. }

175. }

176.

177.

178. // rounded neck between stem and body

179.

180. module rounded_neck_part() {

181. difference() {

182. translate([0,0,stem_h - neck_len/4])

183. cylinder(h = neck_len/2,

184. d = stem_d + neck_d,

185. $fn = detail);

186.

187. rotate_extrude(angle = 360, $fn = detail) {

188. translate([

189. stem_d/2 + neck_d/2,

190. stem_h - neck_d/2 * cos((180 - body_tilt)/2)
191. i)

192. circle(d = neck_d * 1.002, $fn = detail);
193. }

194.

195. hull() {

196. translate([0,0,inner_ball_z])

197. sphere(d = inner_ball _d, $fn = detail);
198.

199. translate([0,0,inner_neck_z])

200. cylinder(h = 0.1, d = inner_neck_d, $fn = detail);

201.

202.

203.

204.

205.

206.

207.

208.

209.

210.

211.

212.

213.

214.

215.

216.

217.

218.

219.

220.

221.

222.

223.

224.

225.

226.

227.

228.

229.

230.

231.

232.

233.

234.

235.

236.

translate([0,0,body_z])

sphere(d = body_d - 2*wall, $fn = detail);

// upper body / bowl

module upper_body_part() {
difference() {
translate([0,0,body_z])
scale([1,1,body_top_scale])
sphere(d = body _d, $fn = detail);

// top cut at max height
translate([0,0,glass_max_h + 50*body_top_scale - rim_th/2])

cube(100*body_top_scale, center = true);

// bottom cut near rim zone
translate([9,0,-50*body_top_scale + body_z - rim_th/2])

cube(100*body_top_scale, center = true);

translate([0,0,body_z])
scale([1,1,body_top_scale])

sphere(d = body_d - 2*wall, $fn = detail);

// rim (no output if rim_th <= 0)

module rim_part() {
if (rim_th > @) {

rotate_extrude(angle = 360, $fn = detail) {

237. translate([rim_radius, glass_max_h - rim_th/2])
238. circle(d = rim_th, $fn = detail);

239, }

240. }

241. }

242.

243.

244, // assembly

245.

246. module goblet() {

247. union() {

248. base_part();

249. stem_part();

250. base_stem_fillet();
251. lower_body_part();
252. stem_body_transition();
253. rounded_neck_part();
254. upper_body_part();
255. rim_part();

256. }

257. }

258.

259. goblet();

Note that the above script is rearranged from the work found here: “Simple Wine Glass Generator
OpenSCAD by RacoonX on Thingiverse, URL: https://www.thingiverse.com/thing:4914266.”

Rendering the above script models the wine glass follows.

In contrast, the proposed workflow separates geometric definition from the coding process. In this
workflow, the user first generates the relevant point clouds using the IPCM systems. (For detailed
operational instructions, please refer to the documentation available at: https://commons-
repo.github.io/002-research/). Subsequently, a concise script is written based on the developed
template and functions, which are also available at the aforementioned URL. The following
figures illustrate the generated points, the corresponding script, and the final rendered model,

respectively.

o
o
o

aﬁmoooooooo

ooooooooooooog

1. include<openscad_template.scad>

2. points = [[93.59999, 36.16666], [94.24068, 39.8713], .., [82, 36.16666]];

4. rotate_extrude($fn=250){

5. create_polygon (points) ;
6. }
7.

€« >

The following figure compares the abovementioned workflows.

Traditional Workflow s 259 Li . € >
module base_part() {
Concept | > if (base_edge <=90) { s SCrlpt I:>
// center disk
Q cylinder(h = base_h/2 +base_h/2 * sin(90 - base_edge),
d=base_d, $fn= detail);
// curved outer edge
intersection() {
cylinder(h=base_h, d =base_d, $fn = detail); P LY
hull() { R y
Model
= Proposed p—
Workflow include<openscad_template.scad>
points = [[93.59999, 36.16666]....]:
. rotate_extrude($fn=250){
I:> Points |:> create_polygon (points) ;
— g } !
E) o 6 e Sorig W

As seen in the above figure, the contrast between the workflows provides empirical evidence of
the cognitive and computational difficulty inherent in the traditional workflow. The traditional
workflow imposes a significant burden by forcing the user to bridge the gap between visual intent
and rigid code: the user must not only define coordinates but also manually implement the heavy
geometric calculations required for curve evaluation and Boolean operations. This results in a
verbose script of approximately 259 lines, introducing strict syntax requirements and debugging
demands that distract from the creative process. In contrast, the proposed framework
systematically abstracts this complexity into the IPCM Layer, reducing the script required from
the user to a mere 6 lines. This represents a code reduction of over 97%, effectively eliminating
the cognitive and computational barrier and allowing the user to focus entirely on the design intent

rather than algorithmic implementation.

The complete list of “points” for the above script is as follows:

1. points = [[93.59999, 36.16666], [94.24068, 39.8713], [94.85013, 43.55418], [95.42976,
47.22901], [95.98176, 50.90787], [96.50889, 54.60128], [97.01432, 58.31837], [97.50145,
62.06691], [97.97372, 65.85345], [98.43447, 69.68332], [98.8868, 73.56074], [99.33343,
77.48883], [99.77659, 81.46967], [100.21795, 85.50438], [100.65856, 89.59314], [101.09878,
93.73525], [101.53825, 97.92918], [101.97591, 102.17266], [102.40999, 106.4627],
[102.83801, 110.79569], [103.25687, 115.16744], [103.66286, 119.57328], [104.05169,
124.0081], [104.41864, 128.46644], [104.75855, 132.94254], [105.06593, 137.43044],
[105.33506, 141.92403], [105.56001, 146.41711], [105.73481, 150.90348], [105.85343,
155.37695], [105.90995, 159.83147], [105.89855, 164.26111], [105.81365, 168.66015],

[105.64993, 173.0231], [105.4024, 177.34476], [105.06646, 181.62025], [104.63792,

185.

84501], [104.11309, 190.01486], [103.48875, 194.12602], [102.76225, 198.1751],

[101.93145, 202.15911], [100.99481, 206.07552], [99.95134, 209.92221], [98.80066,

213.
[93.
[85.
250.
[70.
270.
280.
291.
[33.
[25.
[19.
[15.
[13.
[13.
386.
[13.
[13.
464.
486.
[17.
520.
533.
537.
537.
537.
567.
567.
567.
[26.
567.
541.
514.
487.

460.

697517, [97.54296, 217.40017], [96.17901, 221.02939], [94.71015, 224.58481],

13829, 228.06651], [91.4659, 231.47497], [89.69598, 234.81114], [87.83205, 238.07635],
87815, 241.27239], [83.83878, 244.40143], [81.71893, 247.46605], [79.52403,

469251, [77.25994, 253.41441], [74.93292, 256.30529], [72.54962, 259.14604],

11705, 261.94117], [67.64256, 264.69555], [65.13382, 267.41437], [62.59876,

10317], [60.04562, 272.76774], [57.48281, 275.4142], [54.91898, 278.04888], [52.36292,
678317, [49.82354, 283.30922], [47.30983, 285.94843], [44.8308, 288.60287], [42.39545,
279461, [40.01266, 293.98509], [37.69121, 296.72655], [35.43962, 299.51046],

26615, 302.34316], [31.17869, 305.2307], [29.18467, 308.17872], [27.29102, 311.19237],
50403, 314.27624], [23.8293, 317.4343], [22.27161, 320.6698], [20.83491, 323.98523],
52214, 327.38224], [18.33523, 330.8616], [17.275, 334.42314], [16.34108, 338.06577],
5319, 341.78741], [14.84461, 345.58499], [14.27511, 349.45451], [13.81803, 353.39101],
46672, 357.38861], [13.46672, 361.44856], [13.46672, 365.53929], [13.46672, 369.6764],
46672, 373.84274], [13.46672, 378.02837], [13.46672, 382.22253], [13.46672,

413567, [13.46672, 390.58872], [13.46672, 394.73392], [13.46672, 398.83334],

46672, 398.83334], [13.46672, 412.7075], [13.46672, 426.58166], [13.46672, 448.45582],
46672, 454.32999], [13.46672, 454.32999], [13.46672, 459.19658], [13.79929,

29263], [14.0163, 469.57689], [14.07667, 475.00413], [14.21859, 480.52445], [14.48731,
08339], [14.93294, 491.62242], [15.60798, 497.07997], [16.56495, 502.39281],

85414, 507.49776], [19.52161, 512.33356], [21.60739, 516.84289], [24.14401,

974467, [27.15528, 524.68503], [36.65546, 527.94136], [34.64886, 530.7219], [39.12982,
01828], [44.08324, 534.83633], [49.4855, 536.19679], [55.30611, 537.13539], [61.50982,
70237], [68.05941, 537.70237], [74.91918, 537.70237], [82.0591, 537.70237], [89.45982,
70237], [97.1183, 537.70237], [105.0545, 537.70237], [113.31871, 537.70237], [122,
702371, [122, 537.96249], [122, 545.46249], [122, 552.96249], [122, 560.46249], [122,
962497, [122, 567.96249], [113.28571, 567.96249], [104.57143, 567.96249], [95.85714,
962497, [87.14286, 567.96249], [78.42857, 567.96249], [69.71429, 567.96249], [61,
962497, [52.28571, 567.96249], [43.57143, 567.96249], [34.85714, 567.96249],

14286, 567.96249], [17.42857, 567.96249], [8.71429, 567.96249], [0, 567.96249], [0,
962497, [@, 562.61064], [0, 557.25879], [@, 551.90694], [@, 546.55509], [0,

20324], [@, 535.85138], [0, 530.49953], [@, 525.14768], [@, 519.79583], [0,

443987, [0, 509.09213], [0, 503.74028], [@, 498.38842], [0, 493.03657], [0,

684721, [0, 482.33287], [0, 476.98102], [0, 471.62917], [0, 466.27731], [0,

92546], [@, 455.57361], [0, 450.22176], [0, 444.86991], [@, 439.51806], [0, 434.1662],

(e,

402.

(e,

343,
316.
289.
278.
277.
274.
267.
[54.
[66.
[76.
226.
210.
193.
[94.
161.
142.
124.
[90.
[88.
[86.
[84.

[82.

428.81435], [0, 423.4625], [0, 418.11065], [0, 412.7588], [0, 407.40695], [0,

95517,

[0, 396.70324], [@, 391.35139], [0, 385.99954], [0, 380.64769], [0, 375.29584],

369.94399], [0, 364.59213], [0, 359.24028], [0, 353.88843], [0, 348.53658], [0,

184731,
425471,
666217,
900527,
62951,
012471,
924177,
67563,
32865,
42575,
050237,
383417,
250347,
73106,
1462117,
513417,
268657,
27081,
37139,
62325,
89783,

99627,

[0, 337.83288], [0, 332.48102], [0, 327.12917], [0, 321.77732], [0,

[0, 311.07362], [0, 305.72177], [0, 300.36992], [0, 295.01806], [0,

[0, 284.31436], [0, 278.96251], [0, 278.96251], [2.36336, 278.9543], [4.89921,

[7.58663, 278.76493], [10.40491, 278.52015], [13.33417, 278.14625], [16.3557,
[19.4522, 276.96111], [22.60777, 276.13629], [25.80786, 275.15326], [29.03913,

[32.2893, 272.71592], [35.54694, 271.26663], [38.80131, 269.66813], [42.04217,

[45.25962, 266.03841], [48.44401, 264.01427], [51.58583, 261.85479],
259.56259], [57.70405, 257.13986], [60.66179, 254.5884], [63.53967, 251.9097],
249.10499], [69.01995, 246.17541], [71.60514, 243.12204], [74.07622, 239.9461],
236.64899], [78.64693, 233.23246], [80.73377, 229.69866], [82.68111,

[84.48477, 222.29037], [86.14157, 218.42288], [87.64944, 214.4522], [89.00742,

[90.21571, 206.22223], [91.27565, 201.97498], [92.1897, 197.64855], [92.96143,

[93.59543, 188.78821], [94.09728, 184.27036], [94.47341, 179.70526],
175.10159], [94.87811, 170.46807], [94.92302, 165.81342], [94.87466,

[94.74218, 156.4748], [94.53493, 151.80721], [94.26226, 147.15104], [93.93344,

[93.55753, 137.90083], [93.14323, 133.31918], [92.69882, 128.77364], [92.232,

[91.74985, 119.80789], [91.25871, 115.39425], [90.76414, 111.02982],
106.71596], [89.78252, 102.45326], [89.3021, 98.24167], [88.83142, 94.68049],
89.96851], [87.92196, 85.9041], [87.48214, 81.88531], [87.05011, 77.91009],
73.97638], [86.19833, 70.88235], [85.77169, 66.2266], [85.33943, 62.40845],
58.62816], [84.44372, 54.88726], [83.97509, 51.18892], [83.49175, 47.53827],

43,94285], [82.4951, 40.41303], [82, 36.16666]];

