
Comparing the workflow with traditional approaches 

(Example 1: Modeling a wine glass) 

 

To illustrate the difference in workflow efficiency, consider the modeling of a standard wine glass. 

The underlying conceptual shape is shown below. 

 

In a traditional script-based CAD workflow, the user must translate this visual concept directly 

into code. The following OpenSCAD script is a representative example of this approach. 

 

  1. // parameters 

  2.   

  3. detail = 100;     // mesh resolution 

  4. wall   = 2.4;    // wall thickness 

  5.   

  6. // base (foot) 

  7. base_d    = 75; 

  8. base_h    = 10; 

  9. base_edge = 0;   // 0–180° 

 10.   

 11. // stem 

 12. stem_d       = 8; 

 13. fillet_r     = 18;  // radius of foot–stem fillet 

 14. fillet_shape = 1;   // 0.3 flat, 1 round, 2.5 steep 

 15.   

 16. // body (torso + bowl) 

 17. body_z         = 120;  // sphere center height 

 18. body_d         = 70;   // body diameter 

 19. body_tilt      = 40;   // max sidewall angle 

 20. neck_d         = 50;   // transition diameter 



 21. body_top_scale = 3.5;  // z-scale of upper body 

 22. glass_max_h    = 170;  // max height 

 23. rim_th         = 0;    // rim thickness (0 = off) 

 24.   

 25. // derived values 

 26.   

 27. stem_offset = body_d/2 * cos(body_tilt) - stem_d/2; 

 28. stem_len    = stem_offset / sin(body_tilt); 

 29. stem_h      = body_z 

 30.             - (body_d/2) * sin(body_tilt) 

 31.             - stem_len * cos(body_tilt); 

 32.   

 33. inner_ball_d = stem_d - 2*wall; 

 34. inner_offset = (body_d/2 - wall)*cos(body_tilt) - stem_d/2 + wall; 

 35. inner_len    = inner_offset / sin(body_tilt); 

 36. inner_ball_z = body_z 

 37.              - (body_d - 2*wall)/2 * sin(body_tilt) 

 38.              - inner_len * cos(body_tilt) 

 39.              + wall * sin(body_tilt); 

 40.   

 41. inner_neck_z = body_z - (body_d - 2*wall)/2 * sin(body_tilt); 

 42. inner_neck_d = (body_d - 2*wall) * cos(body_tilt); 

 43.   

 44. neck_len = neck_d * sin(body_tilt); 

 45.   

 46. rim_h_aux  = body_d/2 - wall/4 - (glass_max_h - body_z)/body_top_scale; 

 47. rim_radius = sqrt((body_d - wall)*rim_h_aux - rim_h_aux*rim_h_aux); 

 48.   

 49.   

 50. // base / foot 

 51.   

 52. module base_part() { 

 53.     if (base_edge <= 90) { 

 54.         // center disk 

 55.         cylinder(h = base_h/2 + base_h/2 * sin(90 - base_edge), 

 56.                  d = base_d, $fn = detail); 



 57.   

 58.         // curved outer edge 

 59.         intersection() { 

 60.             cylinder(h = base_h, d = base_d, $fn = detail); 

 61.   

 62.             hull() { 

 63.                 rotate_extrude(angle = 360, $fn = detail) { 

 64.                     translate([ 

 65.                         base_d/2 - base_h/2 * cos(90 - base_edge), 

 66.                         base_h/2 

 67.                     ]) 

 68.                         circle(d = base_h, $fn = detail); 

 69.                 } 

 70.             } 

 71.         } 

 72.     } else { 

 73.         // curved base 

 74.         hull() { 

 75.             rotate_extrude(angle = 360, $fn = detail) { 

 76.                 translate([base_d/2 - base_h/2, base_h/2]) 

 77.                     circle(d = base_h, $fn = detail); 

 78.             } 

 79.         } 

 80.   

 81.         // center disk 

 82.         cylinder(h = base_h/2, 

 83.                  d = base_d - base_h * cos(180 - base_edge), 

 84.                  $fn = detail); 

 85.     } 

 86. } 

 87.   

 88.   

 89. // straight stem with inner ball cut-out 

 90.   

 91. module stem_part() { 

 92.     difference() { 



 93.         translate([0,0,base_h]) 

 94.             cylinder(h = stem_h - base_h + wall * sin(body_tilt), 

 95.                      d = stem_d, $fn = detail); 

 96.   

 97.         hull() { 

 98.             translate([0,0,inner_ball_z]) 

 99.                 sphere(d = inner_ball_d, $fn = detail); 

100.   

101.             translate([0,0,inner_neck_z]) 

102.                 cylinder(h = 0.1, d = inner_neck_d, $fn = detail); 

103.         } 

104.     } 

105. } 

106.   

107.   

108. // fillet from base to stem 

109.   

110. module base_stem_fillet() { 

111.     difference() { 

112.         translate([0,0,base_h]) 

113.             cylinder(h = fillet_r * fillet_shape, 

114.                      d = stem_d + 2*fillet_r, $fn = detail); 

115.   

116.         rotate_extrude(angle = 360, $fn = detail) { 

117.             translate([stem_d/2 + fillet_r, base_h + fillet_r * fillet_shape]) 

118.                 scale([1, fillet_shape]) 

119.                     circle(r = fillet_r, $fn = detail); 

120.         } 

121.     } 

122. } 

123.   

124.   

125. // lower body (torso bottom) 

126.   

127. module lower_body_part() { 

128.     difference() { 



129.         translate([0,0,body_z]) 

130.             sphere(d = body_d, $fn = detail); 

131.   

132.         translate([0,0,body_z]) 

133.             sphere(d = body_d - 2*wall, $fn = detail); 

134.   

135.         // remove upper half of the sphere 

136.         translate([-body_d, -body_d, body_z]) 

137.             cube([2*body_d, 2*body_d, body_d]); 

138.   

139.         // bottom cut (angle limit) 

140.         translate([-body_d, 

141.                    -body_d, 

142.                    body_z - body_d - body_d/2 * sin(body_tilt)]) 

143.             cube([2*body_d, 2*body_d, body_d]); 

144.   

145.         // blend to inner stem ball 

146.         hull() { 

147.             translate([0,0,inner_ball_z]) 

148.                 sphere(d = inner_ball_d, $fn = detail); 

149.   

150.             translate([0,0,inner_neck_z]) 

151.                 cylinder(h = 0.1, d = inner_neck_d, $fn = detail); 

152.         } 

153.     } 

154. } 

155.   

156.   

157. // transition from stem to lower body 

158.   

159. module stem_body_transition() { 

160.     difference() { 

161.         rotate_extrude(angle = 360, $fn = detail) { 

162.             translate([-stem_d/2, stem_h]) 

163.                 rotate(body_tilt) 

164.                     square([wall, stem_len + 0.1]); 



165.         } 

166.   

167.         hull() { 

168.             translate([0,0,inner_ball_z]) 

169.                 sphere(d = inner_ball_d, $fn = detail); 

170.   

171.             translate([0,0,inner_neck_z]) 

172.                 cylinder(h = 0.1, d = inner_neck_d, $fn = detail); 

173.         } 

174.     } 

175. } 

176.   

177.   

178. // rounded neck between stem and body 

179.   

180. module rounded_neck_part() { 

181.     difference() { 

182.         translate([0,0,stem_h - neck_len/4]) 

183.             cylinder(h = neck_len/2, 

184.                      d = stem_d + neck_d, 

185.                      $fn = detail); 

186.   

187.         rotate_extrude(angle = 360, $fn = detail) { 

188.             translate([ 

189.                 stem_d/2 + neck_d/2, 

190.                 stem_h - neck_d/2 * cos((180 - body_tilt)/2) 

191.             ]) 

192.                 circle(d = neck_d * 1.002, $fn = detail); 

193.         } 

194.   

195.         hull() { 

196.             translate([0,0,inner_ball_z]) 

197.                 sphere(d = inner_ball_d, $fn = detail); 

198.   

199.             translate([0,0,inner_neck_z]) 

200.                 cylinder(h = 0.1, d = inner_neck_d, $fn = detail); 



201.         } 

202.   

203.         translate([0,0,body_z]) 

204.             sphere(d = body_d - 2*wall, $fn = detail); 

205.     } 

206. } 

207.   

208.   

209. // upper body / bowl 

210.   

211. module upper_body_part() { 

212.     difference() { 

213.         translate([0,0,body_z]) 

214.             scale([1,1,body_top_scale]) 

215.                 sphere(d = body_d, $fn = detail); 

216.   

217.         // top cut at max height 

218.         translate([0,0,glass_max_h + 50*body_top_scale - rim_th/2]) 

219.             cube(100*body_top_scale, center = true); 

220.   

221.         // bottom cut near rim zone 

222.         translate([0,0,-50*body_top_scale + body_z - rim_th/2]) 

223.             cube(100*body_top_scale, center = true); 

224.   

225.         translate([0,0,body_z]) 

226.             scale([1,1,body_top_scale]) 

227.                 sphere(d = body_d - 2*wall, $fn = detail); 

228.     } 

229. } 

230.   

231.   

232. // rim (no output if rim_th <= 0) 

233.   

234. module rim_part() { 

235.     if (rim_th > 0) { 

236.         rotate_extrude(angle = 360, $fn = detail) { 



237.             translate([rim_radius, glass_max_h - rim_th/2]) 

238.                 circle(d = rim_th, $fn = detail); 

239.         } 

240.     } 

241. } 

242.   

243.   

244. // assembly 

245.   

246. module goblet() { 

247.     union() { 

248.         base_part(); 

249.         stem_part(); 

250.         base_stem_fillet(); 

251.         lower_body_part(); 

252.         stem_body_transition(); 

253.         rounded_neck_part(); 

254.         upper_body_part(); 

255.         rim_part(); 

256.     } 

257. } 

258.   

259. goblet(); 

 

Note that the above script is rearranged from the work found here: “Simple Wine Glass Generator 

OpenSCAD by RacoonX on Thingiverse, URL: https://www.thingiverse.com/thing:4914266.” 

Rendering the above script models the wine glass follows. 

 

 



 

In contrast, the proposed workflow separates geometric definition from the coding process. In this 

workflow, the user first generates the relevant point clouds using the IPCM systems. (For detailed 

operational instructions, please refer to the documentation available at: https://commons-

repo.github.io/002-research/). Subsequently, a concise script is written based on the developed 

template and functions, which are also available at the aforementioned URL. The following 

figures illustrate the generated points, the corresponding script, and the final rendered model, 

respectively. 

 

 

 

1. include<openscad_template.scad> 

2. points = [[93.59999, 36.16666], [94.24068, 39.8713], …, [82, 36.16666]]; 

3.   

4. rotate_extrude($fn=250){ 

5.     create_polygon (points) ; 

6. } 

7.   

 

 

 



The following figure compares the abovementioned workflows.  

 

 

 

As seen in the above figure, the contrast between the workflows provides empirical evidence of 

the cognitive and computational difficulty inherent in the traditional workflow. The traditional 

workflow imposes a significant burden by forcing the user to bridge the gap between visual intent 

and rigid code: the user must not only define coordinates but also manually implement the heavy 

geometric calculations required for curve evaluation and Boolean operations. This results in a 

verbose script of approximately 259 lines, introducing strict syntax requirements and debugging 

demands that distract from the creative process. In contrast, the proposed framework 

systematically abstracts this complexity into the IPCM Layer, reducing the script required from 

the user to a mere 6 lines. This represents a code reduction of over 97%, effectively eliminating 

the cognitive and computational barrier and allowing the user to focus entirely on the design intent 

rather than algorithmic implementation. 

 

The complete list of “points” for the above script is as follows: 

1. points = [[93.59999, 36.16666], [94.24068, 39.8713], [94.85013, 43.55418], [95.42976, 

47.22901], [95.98176, 50.90787], [96.50889, 54.60128], [97.01432, 58.31837], [97.50145, 

62.06691], [97.97372, 65.85345], [98.43447, 69.68332], [98.8868, 73.56074], [99.33343, 

77.48883], [99.77659, 81.46967], [100.21795, 85.50438], [100.65856, 89.59314], [101.09878, 

93.73525], [101.53825, 97.92918], [101.97591, 102.17266], [102.40999, 106.4627], 

[102.83801, 110.79569], [103.25687, 115.16744], [103.66286, 119.57328], [104.05169, 

124.0081], [104.41864, 128.46644], [104.75855, 132.94254], [105.06593, 137.43044], 

[105.33506, 141.92403], [105.56001, 146.41711], [105.73481, 150.90348], [105.85343, 

155.37695], [105.90995, 159.83147], [105.89855, 164.26111], [105.81365, 168.66015], 

[105.64993, 173.0231], [105.4024, 177.34476], [105.06646, 181.62025], [104.63792, 



185.84501], [104.11309, 190.01486], [103.48875, 194.12602], [102.76225, 198.1751], 

[101.93145, 202.15911], [100.99481, 206.07552], [99.95134, 209.92221], [98.80066, 

213.69751], [97.54296, 217.40017], [96.17901, 221.02939], [94.71015, 224.58481], 

[93.13829, 228.06651], [91.4659, 231.47497], [89.69598, 234.81114], [87.83205, 238.07635], 

[85.87815, 241.27239], [83.83878, 244.40143], [81.71893, 247.46605], [79.52403, 

250.46925], [77.25994, 253.41441], [74.93292, 256.30529], [72.54962, 259.14604], 

[70.11705, 261.94117], [67.64256, 264.69555], [65.13382, 267.41437], [62.59876, 

270.10317], [60.04562, 272.76774], [57.48281, 275.4142], [54.91898, 278.04888], [52.36292, 

280.67831], [49.82354, 283.30922], [47.30983, 285.94843], [44.8308, 288.60287], [42.39545, 

291.27946], [40.01266, 293.98509], [37.69121, 296.72655], [35.43962, 299.51046], 

[33.26615, 302.34316], [31.17869, 305.2307], [29.18467, 308.17872], [27.29102, 311.19237], 

[25.50403, 314.27624], [23.8293, 317.4343], [22.27161, 320.6698], [20.83491, 323.98523], 

[19.52214, 327.38224], [18.33523, 330.8616], [17.275, 334.42314], [16.34108, 338.06577], 

[15.5319, 341.78741], [14.84461, 345.58499], [14.27511, 349.45451], [13.81803, 353.39101], 

[13.46672, 357.38861], [13.46672, 361.44056], [13.46672, 365.53929], [13.46672, 369.6764], 

[13.46672, 373.84274], [13.46672, 378.02837], [13.46672, 382.22253], [13.46672, 

386.41356], [13.46672, 390.58872], [13.46672, 394.73392], [13.46672, 398.83334], 

[13.46672, 398.83334], [13.46672, 412.7075], [13.46672, 426.58166], [13.46672, 440.45582], 

[13.46672, 454.32999], [13.46672, 454.32999], [13.46672, 459.19658], [13.79929, 

464.29263], [14.0163, 469.57689], [14.07667, 475.00413], [14.21859, 480.52445], [14.48731, 

486.08339], [14.93294, 491.62242], [15.60798, 497.07997], [16.56495, 502.39281], 

[17.85414, 507.49776], [19.52161, 512.33356], [21.60739, 516.84289], [24.14401, 

520.97446], [27.15528, 524.68503], [30.65546, 527.94136], [34.64886, 530.7219], [39.12982, 

533.01828], [44.08324, 534.83633], [49.4855, 536.19679], [55.30611, 537.13539], [61.50982, 

537.70237], [68.05941, 537.70237], [74.91918, 537.70237], [82.0591, 537.70237], [89.45982, 

537.70237], [97.1183, 537.70237], [105.0545, 537.70237], [113.31871, 537.70237], [122, 

537.70237], [122, 537.96249], [122, 545.46249], [122, 552.96249], [122, 560.46249], [122, 

567.96249], [122, 567.96249], [113.28571, 567.96249], [104.57143, 567.96249], [95.85714, 

567.96249], [87.14286, 567.96249], [78.42857, 567.96249], [69.71429, 567.96249], [61, 

567.96249], [52.28571, 567.96249], [43.57143, 567.96249], [34.85714, 567.96249], 

[26.14286, 567.96249], [17.42857, 567.96249], [8.71429, 567.96249], [0, 567.96249], [0, 

567.96249], [0, 562.61064], [0, 557.25879], [0, 551.90694], [0, 546.55509], [0, 

541.20324], [0, 535.85138], [0, 530.49953], [0, 525.14768], [0, 519.79583], [0, 

514.44398], [0, 509.09213], [0, 503.74028], [0, 498.38842], [0, 493.03657], [0, 

487.68472], [0, 482.33287], [0, 476.98102], [0, 471.62917], [0, 466.27731], [0, 

460.92546], [0, 455.57361], [0, 450.22176], [0, 444.86991], [0, 439.51806], [0, 434.1662], 



[0, 428.81435], [0, 423.4625], [0, 418.11065], [0, 412.7588], [0, 407.40695], [0, 

402.0551], [0, 396.70324], [0, 391.35139], [0, 385.99954], [0, 380.64769], [0, 375.29584], 

[0, 369.94399], [0, 364.59213], [0, 359.24028], [0, 353.88843], [0, 348.53658], [0, 

343.18473], [0, 337.83288], [0, 332.48102], [0, 327.12917], [0, 321.77732], [0, 

316.42547], [0, 311.07362], [0, 305.72177], [0, 300.36992], [0, 295.01806], [0, 

289.66621], [0, 284.31436], [0, 278.96251], [0, 278.96251], [2.36336, 278.9543], [4.89921, 

278.90052], [7.58663, 278.76493], [10.40491, 278.52015], [13.33417, 278.14625], [16.3557, 

277.6295], [19.4522, 276.96111], [22.60777, 276.13629], [25.80786, 275.15326], [29.03913, 

274.01247], [32.2893, 272.71592], [35.54694, 271.26663], [38.80131, 269.66813], [42.04217, 

267.92417], [45.25962, 266.03841], [48.44401, 264.01427], [51.58583, 261.85479], 

[54.67563, 259.56259], [57.70405, 257.13986], [60.66179, 254.5884], [63.53967, 251.9097], 

[66.32865, 249.10499], [69.01995, 246.17541], [71.60514, 243.12204], [74.07622, 239.9461], 

[76.42575, 236.64899], [78.64693, 233.23246], [80.73377, 229.69866], [82.68111, 

226.05023], [84.48477, 222.29037], [86.14157, 218.42288], [87.64944, 214.4522], [89.00742, 

210.38341], [90.21571, 206.22223], [91.27565, 201.97498], [92.1897, 197.64855], [92.96143, 

193.25034], [93.59543, 188.78821], [94.09728, 184.27036], [94.47341, 179.70526], 

[94.73106, 175.10159], [94.87811, 170.46807], [94.92302, 165.81342], [94.87466, 

161.14621], [94.74218, 156.4748], [94.53493, 151.80721], [94.26226, 147.15104], [93.93344, 

142.51341], [93.55753, 137.90083], [93.14323, 133.31918], [92.69882, 128.77364], [92.232, 

124.26865], [91.74985, 119.80789], [91.25871, 115.39425], [90.76414, 111.02982], 

[90.27081, 106.71596], [89.78252, 102.45326], [89.3021, 98.24167], [88.83142, 94.08049], 

[88.37139, 89.96851], [87.92196, 85.9041], [87.48214, 81.88531], [87.05011, 77.91009], 

[86.62325, 73.97638], [86.19833, 70.08235], [85.77169, 66.2266], [85.33943, 62.40845], 

[84.89783, 58.62816], [84.44372, 54.88726], [83.97509, 51.18892], [83.49175, 47.53827], 

[82.99627, 43.94285], [82.4951, 40.41303], [82, 36.16666]]; 

2.   

 


